Bcr-Abl regulates osteopontin transcription via Ras, PI-3K, aPKC, Raf-1, and MEK.
نویسندگان
چکیده
Chronic myeloid leukemia (CML) is caused by the constitutively active Bcr-Abl tyrosine kinase. This fusion protein is generated by the Philadelphia translocation t(9;22). CML is a progressive condition that invariably advances from a drug-sensitive to a drug-resistant, aggressive, acute leukemia. The mechanisms responsible for this progression are largely unknown; however, in many cases, progression is accompanied by an increase in Bcr-Abl expression. Osteopontin (OPN) expression has been shown to be involved in the progression and increased aggression and invasiveness of many solid tumors. Here, we demonstrate that OPN expression is induced in a model of leukemia, and we describe the identification of specific signaling pathways required for the induction of OPN expression by p210 Bcr-Abl. We have determined that high levels of Bcr-Abl activate a signaling cascade involving the sequential activation of Ras, phosphatidylinositol-3 kinase, atypical protein kinase C, Raf-1, and mitogen-activated protein kinase kinase, leading to the ultimate expression of OPN. Our results suggest that these molecules represent a single pathway and also that there is no redundancy in this pathway, as inhibition of any individual component results in a block in the induction of OPN. The data presented here define for the first time the ability of Bcr-Abl to stimulate the expression of OPN and also identify the signaling pathway involved. This may not only prove important in understanding the mechanisms of progression of CML but also highlights a pathway that may prove significant in many other cases of oncogenesis, where OPN expression is implicated.
منابع مشابه
BCR-ABL Regulates Phosphatidylinositol 3-Kinase-p110 Transcription and Activation and Is Required for Proliferation and Drug Resistance*
The BCR-ABL oncogene is the hallmark of chronic myeloid leukemia, a clonal hematopoietic stemcell disorder. BCR-ABLdisplays constitutive tyrosine kinase activity, required for its transformation ability. Although the molecular mechanisms behind this malignancy are not fully understood, a role for phosphatidylinositol (PI) 3-kinase has been repeatedly described. Here we report the specific up-re...
متن کاملBCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance.
The BCR-ABL oncogene is the hallmark of chronic myeloid leukemia, a clonal hematopoietic stem cell disorder. BCR-ABL displays constitutive tyrosine kinase activity, required for its transformation ability. Although the molecular mechanisms behind this malignancy are not fully understood, a role for phosphatidylinositol (PI) 3-kinase has been repeatedly described. Here we report the specific up-...
متن کاملAnti-leukemia effect of perillyl alcohol in Bcr/Abl-transformed cells indirectly inhibits signaling through Mek in a Ras- and Raf-independent fashion.
PURPOSE Perillyl alcohol (POH) displays preventive and therapeutic activity against a wide variety of tumor models, and it has been suggested that this might be associated with the ability of POH to interfere with Ras prenylation. POH also selectively induces G(1) arrest and apoptosis in Bcr/Abl-transformed hematopoietic cells. Because signaling through Ras is necessary for Bcr/Abl transformati...
متن کاملThe angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis.
Angiogenesis, the formation of new blood vessels, is a critical step for tumor growth and metastasis and an integral component of the pathologic inflammatory response in arthritis and the proliferative retinopathies. The CD13/aminopeptidase N (CD13/APN) metalloprotease is an important regulator of angiogenesis where its expression on activated blood vessels is induced by angiogenic signals. Her...
متن کاملRoles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of leukocyte biology
دوره 78 1 شماره
صفحات -
تاریخ انتشار 2005